

Harsha Vardhan Tetali

harsha.tetali@helsinki.fi
LinkedIn, Google Scholar, Personal Webpage

EXPERIENCE	Postdoctoral Researcher Department of Computer Science, University of Helsinki <i>Multi-source probabilistic inference research group</i> Advising and working along students in:	May 2025 - Present
	<ul style="list-style-type: none">Machine learning models for Metabolic modeling – implemented and trained a modified transformer architecture based Neural network model from scratch in PyTorch with modifications to deal with metabolite concentrations for micro-organisms.Physics-informed machine learning for wave propagation using Fourier Neural Operators.	
	Staff Engineer - DSP Architecture Team Marvell Technology, Inc. <i>Generative Modeling of NAND Flash</i>	May 2023 - Dec 2024
	<ul style="list-style-type: none">Spatio-temporal Channel Modeling (includes modeling for different word-lines and blocks within SSD at different strain conditions) for SSD NAND Channel using data collected from physical NAND chips.Demonstrated the relevance of using Gaussian Processes for Spatio-temporal modeling of SSD NAND Channel Modeling.Developed a Spatio-temporal generative model for SSD NAND using Gaussian Processes and implemented it in <i>PyTorch</i>.Developed and distributed the functional module for the above to others in the team to use it directly and simulate NAND Flash behavior at the voltage level.	
	<i>LLMs (GenAI) work</i>	
	<ul style="list-style-type: none">Evaluated multiple leading LLMs, developed metrics, to suggest to use within the company.Evaluated Embedding models for code and text and developed metrics and experiments for the same.Implemented a local RAG for internal use within the company.	
	<i>Data Collection for NAND Flash Modeling</i>	
	<ul style="list-style-type: none">Wrote scripts to run python programs to collect Voltage level data to extract histograms of voltage (probability distributions) of NAND FlashRan various experiments to exert different stress conditions (program erase cycling, read disturb, and high temperature data retention) on SSD NAND Flash and collect the voltage distribution data.	
	<i>Skills Associated:</i> Python, Pytorch, Scikit-learn, Numpy, Algorithms and Data Structures, Mathematical Modeling, Signal Processing, Machine Learning, Deep Learning, Scripting.	
	Channel Modeling DSP Engineer Intern Marvell Technology, Inc.	May 2022 - August 2022

- **Developed** Spatio-temporal models for SSD NAND channels (estimation of probability densities) with special emphasis in **modeling the tail part** of the distribution to **obtain better error characteristics**.
- **Processed** huge datasets of SSD NANDs at the voltage level and **developed** algorithms that work on producing results from the entire dataset within reasonable time.

Research & Teaching Assistant August 2018 - May 2023
University of Florida, Gainesville

- Digital Signal Processing (Teaching Assistant, Fall 2018, Fall 2021) & Computer networks (Summer 2021)
- **Introducing** physics based constraints into unsupervised machine learning models (dictionary learning and matrix factorization) and **bridging machine learning with mathematical physics** through means of **optimization theory** and ultimately using them for **Structural Health Monitoring** applications.
- This work is mostly based on ideas from **discretization of partial differential equations** and **non-convex optimization**.
- Made **significant contributions** to enhancing **interpretability** in scientific machine learning, particularly **PDE based physics-informed machine learning**.
- Dealt with huge acoustic wave (traveling in solids) datasets and obtained fast algorithms for **data completion/imputation** and similar other processing of signals.
- Published in **IEEE Transactions on Signal Processing (TSP)**, **IEEE Sensors**, **IEEE Machine Learning for Signal Processing (MLSP)**, **Acoustic Society of America (ASA)**, **NeurIPS workshop for Machine Learning in Physical Sciences**, etc.

Skills Associated: Signal Processing, Mathematical Modeling, Numerical Optimization, Physics-informed machine learning, MATLAB.

Teaching Assistant August 2016 - May 2018
Indian Institute of Technology, Gandhinagar (IITGN)

- Probability and Random Processes, Control Theory, Pattern Recognition and Machine Learning, The Art and Science of Photography (short course)

EDUCATION **Graduate, Doctor of Philosophy** August 2018 - May 2023
Electrical and Computer Engineering
 University of Florida, Gainesville (GPA: 3.93/4.0)
 Thesis: **Physics-Informed Matrix Factorizations and Approximate Eigen-decompositions in Structural Health Monitoring**
 Advisor: Prof. Joel B. Harley.

Graduate, Masters of Technology August 2016 - June 2018
Electrical Engineering
 Indian Institute of Technology, Gandhinagar (CPI: 8.94/10)
 Thesis: **Estimation of Scene-Flow from Optical-Flow for Rigid Body Translations**
 Advisor: Prof. Shanmuganathan Raman.

Undergraduate, Bachelors of Technology

Electronics and Communications Engineering

Sardar Vallabhbhai National Institute of Technology, Surat (CGPA: 7.96/10)

Thesis: **Tracking of Fingers in Sixth-Sense Technology**

Advisor: Prof. Prashant K. Shah.

July 2012 - May 2016

INTERESTS

Physics-informed machine learning, Computational Physics, Numerical methods, Signal Processing, Large Language Models (LLM), Retrieval Augmented Generation (RAG), Theoretical machine learning, Optimization theory.